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Thermodynamic and structural properties of a
screened-Coulomb charged hard-sphere model are
computed by means of statistical theories and
Monte Carlo (MC) computer simulations. The
model represents aqueous solutions of 2-—2
electrolytes at 25 °C. The theories in consideration
are the mean spherical approximation (MSA) and
some approximations that are closely related to the
MSA, the hypernetted chain (HNC) equation and a
new modification of the Percus-Yevick (PYRL)
equation. The theories are discussed in terms of the
exact Monte Carlo results. Salt concentrations
cover the range from 0.0001 M to 3 M. We find that
HNC and PYRL are in good agreement with MC
results over the entire concentration range, the EXP
agrees at low concentrations, whereas the other
theories are rather poor. The HNC and PYRL are
found to predict the density of triple-ion clusters (+
—+ and —+ —) in good agreement with MC
results.

1. INTRODUCTION

During the last couple of decades there has been
significant progress in the theory of electrolyte
solutions. The main reason is the development of
computer-simulation methods because they yield
properties of model systems in a formally exact way.
Simulations are  often called computer
“experiments” due to their similarity with
laboratory experiments. Approximate statistical
theories, which are generally less laborious than
simulations, can be discussed in terms of the exact
results.

The long range of Coulomb interactions gives rise
to special methodological problems in computer
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simulations of electrolyte solutions and molten salts.
This was observed by Krogh-Moe et al. as a drift of
the internal energy of a LiCl model towards
unreasonably low values during the computation.!
Woodcock and Singer 2 found that this drift did not
occur when they computed the energy by the Ewald
method ? instead of the Evjen (or minimum image)
method 4 that Krogh-Moe and coworkers had used.
Valleau and Whittington ° have given a discussion
of these methodological problems and the possible
erroneous effect of periodic boundary conditions as
compared to a real, uniform fluid.

In an earlier paper,® we discussed a close
structural similarity between Coulombic and
Yukawa (screened Coulombic) systems, which was
used in a perturbation theory of the former. The
Yukawa interaction was made so short-ranged that
the problems with energy computation were not
encountered and simulations could be carried out as
usual for simple fluids.” Because of the structural
similarity, the perturbation from Yukawa to
Coulomb potential is small and the theory
presumbly accurate. Properties of the Coulombic
system could thus be obtained in a way
circumventing the methodological problems of a
direct simulation.

Apart from its relation to Coulombic systems, the
Yukawa system is of interest to us also because it is
so well-suited for studies of various consequences of
the range of the potential.®

In the present paper, we focus on the
thermodynamic and structural properties of a
model that we have called the RPMY. It consists of
charged hard spheres of diameter R. The pair
potential is given by (1.1), where ¢, is the charge on
ioniand z a screening parameter, which determines
the range of the potential. The ions are immersed in
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a medium represented by its dielectric constant &,
and they are charge symmetric, ie. e, = —e_.

In the limiting case z—0, the RPMY becomes
identical to the so-called restricted primitive model
(RPM), which is known to be a realistic model for
electrolyte solutions and molten salts.® We
anticipate from the observed relation between the
two models® that the structural short-range
properties of the RPMY are very similar to those of
the RPM. The present work thus complements
some recent studies on the structure of electrolyte
models.®>~!!  Further application of the
perturbation theory for the RPM in terms of the
RPMY reference system will be discussed in a future
paper.

The thermodynamic states of the RPM and
RPMY are determined by two variables, which in
the canonical ensemble are conveniently chosen to
be a reduced inverse temperature, $*, and a reduced
number density, p*. These variables are defined by
eqns. (1.2) and (1.3), where k is Boltzmann’s constant,

B* =e*/(ekTR) (1.2)

p*=NR3/V (1.3)
T the absolute temperature, N the total number of
ions, and V the volume of the system. There are N,
cations and N_ anions, subject to the
electroneutrality condition N, =N_=N/2. The
RPMY is also determined by the screening
parameter z. In the present work, the values of p*
and B* were chosen typical for aqueous 2—2
electrolytes at 25°C in the concentration range
0.0001 —3 M.

Three largely analytic theories, the mean
spherical approximation (MSA),!> the EXP
approximation of Andersen and Chandler,!® and
the truncated I'2 approximation (TI2A),'4 are
described in Section 2. The hyper-netted chain
(HNC) and Percus-Yevick (PY) equations are given
in Section 3. We also discuss a modification of the
PY equation due to Allnatt (PYA)!® and derive a
new version of it, which we show is comparable in
accuracy with the HNC. These equations must be
solved by numerical methods, which are outlined in
Section 3.

The Monte Carlo (MC) computer simulations are
described in Section 4. In Section 5, we discuss the
internal energy of the RPMY and the accuracy of
the different theories in light of the MC results. Our
main conclusion is that both HNC and PYRL are
within 139% of the MC results over the entire
concentration range, and they are within the
statistical uncertainties of the MC values at the
highest and lowest concentrations. The other
theories are, in general, rather poor, with exception
of the EXP at low concentrations.

The radial distribution functions are discussed in
Section 6. We find there too, that the HNC and
PYRL are most accurate and generally in good
agreement with the MC results. Our results show
that the tendency of triple-ion formation in the
RPMY at intermediate concentrations is well-
described by the HNC equation, which does not
agree with what Rossky et al. have found in a recent
study of a charged soft-sphere model.!!

2. APPROXIMATIONS

Mean  spherical approximation. A set of
approximations to the thermodynamic and
structural properties of the RPMY can be obtained
from their cluster expansions by neglecting all but
the simplest terms. One such approximation is the
mean spherical approximation (MSA), obtained by
retaining only the leading contribution to the direct
correlation function, eqn. (2.1), and combining this
approximation with the exact relation (2.2) through

cifSMr) = —Bu,(r) for r>R, 2.1

g;)=0 for r<R (2.2)
the Ornstein — Zernike (OZ) equation. In eqn. (2.1),
B~* equals the product of Boltzmann’s constant and
the absolute temperature, and g;(r) in eqn. (2.2) is the
radial distribution function (rdf). Eqns. (2.1), (2.2),
and the OZ equation form a closed set of equations,
the solution to which is given as c;(r) for r <R and
g;;(r) for r>R. The thermodynamic properties can
then be computed from the correlation functions via
one of the three routes; the energy equation,
pressure equation or compressibility equation.
The MSA is of interest to us for two reasons.
Firstly, it is a well-defined and self-contained
approximation that may be considered an extension
to the Debye-Hiickel theory in that the ion’s cores
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are taken into account. (In the limit R—0, the MSA
becomes identical to the Debye-Hiickel theory.)
Thus, in terms of the screening of the potential of
average force, the MSA accounts for the hard-
sphere screening in addition to the well-known
Debye screening, and to some extent also for the
combined effects of these elements. Secondly, the
solution of the MSA is an important building block
in more sophisticated approximations. Indeed, the
cluster expansions for the properties of the RPMY
may be renormalized and expressed in terms of the
same functionals that appear in the solution of the
MSA like it may be expressed in terms of the
functionals that appear in the Debye-Hiickel theory.

Waisman 2 has solved the MSA for the RPMY
and expressed the internal energy as obtained from
the energy equation in terms of a quartic equation
for w=2U/NkTB*, eqn. (2.3), where x=p*f*
[14+w(l—e"9/22]* = —w(z—w/2e%)/2nx 23)
=(eR)?p/ekT. This equation is easily solved
numerically with the Newton-Raphson method, and
results for U/NKT are shown in Table 1.

The MSA rdf is given by eqns. (2.2) and (2.4).
gISMr) = g™ +(—1)*Cr) for r>R (24)
Here, C(r) is the so-called chain function,'® which
can be expressed as the sum of diagrams of a certain
topology in the cluster expansion of the exact rdf.
The term g"%(r) is the rdf of hard spheres as given by
the Percus-Yevick (PY) equation.!’” The chain
function C(r) can be computed from Waisman’s
solution for the direct correlation function, eqn. (2.5)

AP = M(r) +

. 1—e ™  cosh(zr)—1 ]
_1l+] *.
(=8 w[ zr + 2z%¢%
for r<R

(2.5)

in combination with eqn. (2.1) and the OZ equation.
The term c"5(r) is the direct correlation function for
hard spheres as given by the PY equation.!” We
shall present the MSA rdf’s graphically for some
thermodynamic states of the RPMY in Section 6.
The EXP-approximation of Andersen and
Chandler '3 is given by eqn. (2.6) and is readily
computed from the solution for C(r) from the MSA.
The g55¢) in eqn. (2.6) is the exact hard-sphere rdf.

g7 () =g" ) exp[(—1)'*C()]
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We have used the PY approximation for gH5(r),
however, which makes little numerical difference for
the hard-sphere densities we shall discuss in this
paper. Some EXP rdf’s for the RPMY are shown
graphically in Section 6.

We have also computed the internal energy,
U/NkT, from gE¥¥(r) and the energy equation (2.7).
Here, gp(r) is dcﬁned by eqn. (2.8). Numerical results
are shown in Table 1.

U 2nV 2 ®
i Z pip; 5 “u(r )gis(r)r dr

NkT NkTl =
= 2nxe* ? e~ " rgp(rydr 2.7
1
gplr) = 39,1 —9g12(] (2.8)

The truncated I"2 approximation (TT"2A) is obtained
by adding one term, eqn. (29), to the MSA
Helmholtz' free energy per particle.!* The factor
g%8(r) is the coefficient of the linear term in the
density expansion of g"S(). The TI'2A internal
energy is then given by

2
S3.0= —7p*2 | g¥()C2(ryr2dr 29)
1

(o= ()
NKT )74~ \NKT Jysa e +h aﬂ*

where subscript “MSAE” denotes a quantity
obtained from the energy equation in the MSA. The
integral in eqn. (2.9) and the derivative in eqn. (2.10)
have been computed numerically and results for
the internal energy are given in Table 1.

The TI'2A has proved to be a very useful
approximation for the thermodynamic properties of
the hard-sphere Coulombic system,'*!® and it
seems worthwhile to examine it also for the Yukawa
system. However, the TI'2A is known to be
inaccurate in the p*, p*-regime we investigate here
because it lacks an important contribution, AB,,
from the second ionic virial coefficient.!*'® This
contribution can be computed numerically and
added to the TI2A, resulting in the so-called
TI'2AUB,.'* The MSA also lacks this contribution,
whereas the EXP approximation incorporates the
complete second ionic virial coefficient. The
numerical difference between the TI'2A and the
MSA is very small at low densities because of the

(2.10)
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Table 1. Internal energy for the RPMY.

— U/NKT
p* c[mol/1]* p* z nx1073®

MC MSA TI2A TI2AUB, EXP HNC PYRL
2.685x107! 3 22388 2 8 1.0514+.010 0930 1.033 1.033 1.465 1.045 1.047
1.787x 107! 2 23850 2 9 0918+.007 0.820 0.887 0.887 1.224 0918 0919
8961x1072 1 2.6803 2 9 0.7524+.010 0.642 0.673 0.673 0.972 0.754 0.752
4960 x 10"% 0.56 3.6391 1 8 1.088+.010 0931 0947 0947 1.478 1.082 1.074
3.549%x 1072 04 3.7585 1 8 1.0031+.011 0.811 0.822 0.822 1.368 0.989 0.978
2210x 1072 0.25 39415 1 10 0.888+.011 0.653 0.659 0.661 1.225 0.867 0.852
8.839x 1073 0.1 43577 1 40 0.708 +.006 0.401 0402 0435 0.979 0.673 0.650
5.590x 1073 0.06265 4.5858 1 40 0.623+.006 0.304 0.305 0.376 0.860 0.589 0.566
2231 x1073 0.025 50618 1 40 049 +.01 0.163 0.163 0.329 0.634 0.446 0.426
8.924x10™* 001 54991 1 40 0.346+.021 0.081 0.081 0.288 0.422 0.318 0.307
4.461 x 10™* 0.005 57948 1 40 0.250+.010 0.046 0046 0.232 0.291 0.235 0.229
2231x107% 00025 60385 1 40 0.175+.018 0.025 0.025 0.165 0.188 0.162 0.160
8.924x 1075 0.001 62888 1 40 0.095+.014 0011 0011 0.092 0.098 0.090 0.089
35701075 00004 64640 1 40 0.038+.012 0.005 0.005 0.045 0.046 0.045 0.045
8.924 x 1075 0.0001 6.6287 1 40 0.012+.005 0001 0.001 0.013 0.015 0.013 0.013

“ These concentrations are approximate values. The exact values are given by c = 11.2059p*, assuming R =0.42 nm.® nis

the number of configurations generated in each run.

factor p*? in eqn. (2.9).

The TI'2A has no obvious analogue at the
correlation-function level. The I"2 approximation,
which is similar to the TI"2A except the g¥15(r) of eqn.
(2.9) is replaced by the complete g"S(r), does have
such an analogue, however. Stell ¢ and Sun 2° have
given diagrammatic expressions for it, and they have
derived some simpler, analytic expressions
appropriate for the low-density regime we consider
here. These are eqns. (2.11) and (2.12); eqn. (2.11) was

95N =g M1 +(— 1) HC()] @.11)

gRN=g" M1 +(— 1) C(r)+1CHn). .12

originally derived on a different basis by Verlet and
Weis.2! Although none of these rdf’s yield the TT2A
thermodynamics, they may in some sense be
considered TI'2A analogues. Two remarks are
relevant to the p*, f*-regime discussed here. First,
LIN and MSA are not very different because g"(r) is
close to unity at these low densities. Second, SQ is
not necessarily more accurate than LIN despite the
fact that it includes the additional quadratic term,
because |C(r)| is much greater than unity for some
values of r. We recognize, incidentally, LIN and SQ
as truncated Taylor expansions of the EXP

approximation. Because of their symmetry
properties, gi(r) and gi%(r) yield the same
thermodynamics by the energy equation, but they
differ in the pressure and compressibility equations.
Some examples of LIN and SQ are shown in Section
6.

If the theory is not thermodynamically self-
consistent, the three different routes from the
correlation functions will yield different sets of
thermodynamic properties. To illustrate this, we
have computed the excess compressibility factor,
APV/NKT  (relative to the hard-sphere
compresibility factor), in the MSA according to the
three routes. The excess compressinility factor is a
measure of the effective cohesion of the system. The
lack of self-consistency may be used as a criterion for
the validity of the theory. Waisman '2 has shown
relation (2.12) and from the pressure equation we

(APV) _
NKT )usae

X

) - [ ] 1)
2p e

have © eqn. (2.13), where p? and ¢ are given by eqns.
(2.14) and (2.15). The excess compressibility factor as
obtained from the compressibility equation is
always zero in the MSA for the RPMY.
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2242149z +2(p* +9)

224+ 2gz+2p*—2p’e* 213)
p* = —mp*gpR +) =
mx[1+w(l —e~%)/2z]? (2.14)
q* =p*+2°/4 (2.15)

Numerical results for the MSAE and MSA,P
estimates are compared with other theoretical
predictions and Monte Carlo results in Table 2.

3. HNC AND PY INTEGRAL EQUATIONS

Analysis of the cluster expansion of the rdf leads
to the relation?? (3.1), where y;(r)=h;;r)—c;(r)
(hr)=g,r)—1) is the sum of series diagrams and
B;j(r) is the sum of bridge diagrams.

g;5(1) = exp[— Buy(r) + v;4(r) + B;i(r)] (3.1

The hyper-netted chain (HNC) approximation is
made by neglecting B (r); eqn. (3.2). In combination
with the OZ equation, eqn. (3.3), it forms a complete

giNG(r) = exp[ — Buy(r) +7,)]. (.2)

140 = X oufha e lir —r v, (33)
k

set of integral equations that can be solved for g, (r)
and ¢;(r). In the present case, we again make use of
the exact relation (2.2), and the unknowns are g,(r)
for >R and ¢;(r) for all r.

In general, the HNC equation must be solved
numerically and we have employed the method
described by Larsen?® with some minor
modifications that will be described below.

Another frequently used approximation is the
Percus-Yevick (PY) approximation,2* which may be
derived from eqn. (3.1) by first neglecting B,(r) and
then linearizing with respect to y,,(r); eqn. (3.4). For
simple fluids, it turns out that the two
approximations made here to some extent cancel

g () =exp[ — Bu;;(n)] x [1+7;;(n].
Acta Chem. Scand. A 35 (1981) No. 4

(3.4)

2—2 Electrolyte Solution Model 267

one another and that the PY is actually superior to
the HNC. Moreover, y,(r) is generally small for
these fluids. Rasaiah and Friedman 2° found the PY
to be very poor for electrolyte solutions, where the
linearization seems to be too drastic an
approximation to make the erros cancel. This is in
agreement with the expectation that B, (r) is small
compared to In g;,(r), whereas y;(r) is roughly Bu,(r)
and may be quite large for r2 R for ionic systems.

This problem was recognized by Allnatt,!®> who
suggested a PY-like approximation in terms of a
renormalized p(r). His approach was based on a
splitting of the pair potential into a short-range part
u;(r) and a long-range part Au,(r). Because this idea
is relevant to a similar approximation we shall
develop and discuss in this paper, we shall briefly
describe the arguments leading to Allnatt’s PY-
approximation.

Taking Au,(r) to be Coulombic for all , the cluster
expansion for g;(r) may be rearranged according to
Mayer’s renormalization,?® and the Au,(r) bonds
eliminated in favor of the Debye chain sum (3.5). The
parameter k is the inverse Debye screening length.
Introducing g;(r) into eqn. (3.1) leads to eqn. (3.6),
where 7,(r) is given by eqn. (3.7).

eyl 35
a )= (=1 (35)
9ii(r) = exp[ — Buji(r) + q;(1) + 7"} + B;(0]  (3.6)
1) S by =)~ Bu)—a,f0) 37

From eqn. (3.7) we see that 7,(r), in contrast to 7357,
is relatively small because the two dominant terms,
¢;i(r) and BAu,(r) almost cancel. Neglecting B, (r)
leads to the HNC equation, and Allnatt arrived at
his PY-type approximation by an additional
linearization with respect to 7,,(r): eqn. (3.8).

girA®) = expl — Bupr)+ ¢, +1,0)]

Rasaiah and Friedman 2% found that the PYA is
indeed substantially better than the PY, although
not as accurate as the HNC when applied to 2—2
electrolyte solutions. Apparantly, linearization of
exp[t;,(r)] is also too crude an approximation for
these systems. It can also be shown that PYA
approaches the MSA asymptotically as x—»00.13

We shall use Allnatt’s idea, but make a different
choice for Au; (r) for r < R. Specifically, we shall make

(38)
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the same choice as in the optimized random phase
approximation of Andersen and Chandler,!® which
leads us to the exact relation (3.9), where () is
given by eqn. (3.10). Eqn. (3.9) is another
renormalized version of eqn. (3.1). Neglecting B,(r)
leads to the same HNC equation as before, and
linearizing with respect to ;(r) leads to a new PY-
type approximation that we shall call the PYRL;
eqn. (3.11).

g;(r) = exp[ — pu(r) + C;i(r) + 7;) + B;)]  (39)
20 S ) — e )= B — € (3.10)
ghrRHr) = exp[ — Busr) + CMIL+ 1)) (3.11)

Analysis of eqns. (3.10) and (3.11) leads to the
conclusion that linearization of exp[7;r)] must be
less drastic than the similar linearizations occuring
in PY and PYA, the reason being that t(r) is
comparatively small because now also the leading
term of h;(r) is almost cancelled out as well as that of
¢;;(r) in eqn. (3.10). Whether the PYRL contains a
more balanced pair of approximations and hence is
superior to the HNC remains on open question until
we have actually solved the integral equations and
compared them with the exact results.

In a previous work on the hard-sphere
Coulombic system (RPM), one of us has described a
solution method for the HNC equation.?® The
method is based on the traditional iteration
technique,?” but with the new feature of making
maximum use of the analytic solution of the
generalized MSA (GMSA) for this model.2® The
linear combinations (3.12a) and (3.12b), which in the

eolr) = 3ley () —cy5()] (3.12a)

cslr) = 3y, () +c15()] (3.12b)
GMSA for the RPM and RPMY are approximated
by eqns. (3.13a) and (3.13b) are the key elements in
initiating the iteration process. In the present case,
we have actually used the expression (3.13c) instead

cSMSAG) = — Buy(r) + Kpexp(—zpr)/r (3.13a)
cSMA(r) = Kgexp(—zgr)fr; r>R (3.13b)
AP = — Bup(r) (3.13¢)

of (3.13a) because of the somewhat simpler solution
for the initial set of correlation functions. The two
remaining adjustable parameters, K and zg, must be
given values that yield a set of initial correlation
functions that assures optimal convergence and
accuracy of the iteration process. The solution
method is otherwise as described by Larsen.??

Results for the thermodynamic properties
obtained with the HNC and PYRL equations are
given in Table 1, and correlation functions are
shown graphically in Section 6.

4. MONTE CARLO CALCULATIONS

The MC-calculations were carried out with a
system containing 216 ions, 108 of each kind, in a
cubic cell with periodic boundary conditions.
Spherical cut-off at a distance r, was used, and
energy contributions from pairs with a larger
interionic distance were neglected.

Our criteria for the choice of zand r, was that u(r,)
divided by u(R) should be <1.0 x 10~5, For practical
reasons r, was set to be <L/2, where L is the length
of the cubic cell. From these criteria the z-values
listed in Table 1 were chosen, with r,=L/2 at the five
highest densities, and with r /R = 10 at the ten lowest
densities.

The usual Metropolis sampling 2° was employed.
At low densities, this sampling method is inefficient
because relatively small “pockets” of the phase
space contribute significantly to the canonical
means. When a configuration in one such pocket is
accepted, many trial configurations may be required
in order to escape the pocket, and this situation may
lead to a practical ergodicity problem.3%-3! The real-
system analogue is the tendency to form ion pairs
and larger clusters, which may indeed be observed
also in the computer model.!! Unless the system
really is non-ergodic, however, the statistical noise
can be reduced by prolonging the computations or
bias the sampling.> We have chosen to carry out
some very long runs (in some cases 4x10°
equilibrium configurations) in order to reduce the
noise to an acceptable level and obtain the necessary
material for a statistical analysis of our results.

Uncertainties in the computed results can be
estimated from the scatter of subaverages based on
consecutive small parts of the Markov chain.?° One.
has to ensure that the subaverages are statistically
independent in order to estimate the “within run”
uncertainties from the usual normal-distribution
formula.
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Because of the increasing fluctuations as the
system gets more dilute, we had to generate an
increasing number of configurations to get
satisfactory accuracy. For the six highest densities, 8
x 10°—10x 10% equilibrium-configurations were
generated, for the nine lowest densities, 4 x 106
equilibrium-configurations were generated, and at
least 3x105—55x10% configurations were
rejected in each run prior to equilibrium.

A favourable acceptance ratio is about 50 %, and
by adjusting the maximum displacement of the ions
this ratio was obtained for the seven highest
densities. For the lowest densities, the acceptance
ratios increased from 50 to 99.5% with decreasing
density, fairly independently of the maximum
displacement.

Numerical results for U/NkT are given in Table 1.
The numerical results for the osmotic coefficient,
PV/NKT, are given in Table 2. The results for the rdf’s
are given in Section 6.

5. THERMODYNAMIC PROPERTIES

Numerical results for the internal energy
obtained from Monte Carlo calculations, the MSA,
TI2A, TI2AUB,, EXP, HNC and PYRL
approximation are given in Table 1. The values for
p* and B* were chosen from a range corresponding
to that of aqueous solutions of 2—2 electrolytes
from 0.0001 M up to 3 M. Specifically, the values for
p* are close or equal to those used in earlier
investigations of the RPM,3? whereas f*-values
have been determined from the “contact” condition
for the apparent correspondence between the RPM
and the RPMY.® This “contact” condition is based
on the value of the chain sum at contact between two
ions, C(R +), and the requirement is that C(R +) for
the RPMY equals that of the RPM at the same
number density. If the value of z is given, this will
uniquely determine a set of corresponding values of
B* for the RPMY and RPM as discussed in our
earlier paper.® In the present case, we have
determined f*-values for the RPMY corresponding
to the value 6.8116 for the RPM used in previous
investigations.'432 The z-values were chosen
according to the desired range of the potential for
use in MC calculations, as described in Section 4.

The uncertainties in the MC results are given as
three standard deviations on the basis of the
variance-within-runs.3° Subaverages over
consecutive parts of p configurations of the Markov
chain were considered independent if 10°<p<4
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x 10% for the 4 x 10° configuration runs and p=35
x 10*for the shorter runs. The estimated variance in
the average energy was not found to depend on p in
these intervals. '

Unlike the situation for the RPM, there is no
question about methodological problems due to the
energy summation method in the present MC
results. The correspondence between the RPMY
and RPM is questionable, of course, and we shall
return to this in a subsequent paper. For the time
being, we therefore consider the relation between
the RPM and PRMY in a qualitative way only, and
focus our attention on the validity of the various
theories as applied to the RPMY.

The results for the MSA and TI2A confirm
earlier findings® that both approximations are
rather poor for the RPMY, the TI'2A being
somewhat more accurate at higher densities. Both
theories give, for instance, an energy about 50 % too
high at ¢=0.06265 M, whereas the MSA is about
129; and the TI"2A about 2 9 too high at 3 M. At the
lowest concentrations tabulated, both theories
appear to be very poor, although they must be
correct in the (Debye-Hiickel) limit of zero
concentration. By adding AB, the MSA and TI'2A
can be drastically improved at low densities and
slightly at intermediate densities, whereas AB, is
numerically unimportant in the energy at high
concentrations.

The second ionic virial coefficient is contained in
the EXP, HNC and PYRL, which are indeed in good
agreement with the MC results at low densities.
These theories also approach the low-density limit
of the rdf, g,(r)—exp[C, r)], correctly. The EXP
energy is much too low at high densities because it
overestimates g, _(r) at r2 R, whereas both HNC
and PYRL are quite accurate for all densities
studied and well within the uncertainties of the MC
results at high densities. The HNC and PYRL differ
from the MC results by at most 9 and 139,
respectively, at intermediate densities. This is more
than can be explained by uncertainties in the MC
results, and may be related to the theories’
inadequate representation of ion clusters, as
discussed in a recent paper by Rossky et al.'! We
shall return to this question in Section 6.

The PYRL is of the same overall accuracy as the
HNC, and the results at high concentrations
indicate that it may actually be superior at higher
densities. Some preliminary results for p*=0.669
show that the PYRL energy is 0.3, 1.9 and 2.3 % too
high at (8*z)=(1.4191, 1.5075), (3.5476, 3) and
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(5.3197, 4) respectively, when compared to MC
results.® The HNC energy is 3.6, 4.7 and 3.8% too
high, respectively. The PYRL is probably also
superior to Allnatt’s version of the PY equation at
high densities, where the PYA tends to the MSA. We
have solved the PYA for one state only, c=3M,
corresponding to the first line of Table 1. The PYA
energy was determined to U/NkT = —0.936, which
is already quite close to the MSA result.

This impression of the accuracy of the
various theories is confirmed by the computed
osmotic coefficients. Of most interest are the HNC
and PYRL, which show a striking similarity, and are
also very close to the MC results. The difference MC
— integral equation osmotic coefficients is 2 — 3% at
the two highest densities and less at the lower
densities. The MC results are quite uncertain at the
lowest densities because the extrapolation of g, _(r)
to r=R+ is associated with large uncertainties
there.

A check on the thermodynamic self-consistency of
the theories is of interest because it is often used as a
validity-test where computer-simulation results are
lacking. The check is readily applied to the MSA,
which is largely analytic, and some results for the
excess osmotic coefficients are given in Table 2. By
“excess” we here mean the difference between the
osmotic coefficient for the RPMY and that of the
hard-sphere model at the same number density p*.
The quantity PV/NKT for hard spheres was
computed from the Carnahan-Starling equation,3?
for the MC and MSA energy-quation (MSA, E)
results, and from the PY equation for the MSA
pressure-equation (MSA, P) results. The MSA
compressibility equation gives zero for APV/NKT.
The MSA is found to lack self-consistency, as is well-
known from work on the RPM. There does not
seem to be any correlation between the self-
consistency and the accuracy of the theory, however.
For instance, at the highest density, MSA,E .and
MSA,P differ by 140 9, of the MC result, whereas the

Table 2. Excess osmotic coefficient for the RPMY.

—APV/NKT
p* B* z

MC MSAE MSAP
2685x107' 22388 2 045 0356 0993
3.549x1072 37585 1 034 0327 0619
5590x 1073 45858 1 0.19 0.142 0246
4461x107* 57948 1 010 0023 0.038

MSAE is 20% off the MC result. At the lowest
density given in Table 2, the respective differences
are 15 and 759%, in other words a better self-
consistency, but a worse agreement with the exact
result. This seems to be the trend throughout the
table, although the uncertainties in the MC results
become large, in per cent, for the low densities.

6. STRUCTURAL PROPERTIES

In this Section, we shall compare results for the
radial distribution functions obtained by the MC
calculations with those of the HNC, PYRL, MSA,
EXP, LIN and SQ approximations. Some structural
properties of the RPMY are then discussed in
relation to those of two similar models, viz. the RPM
and a charged soft-sphere model. In particular, we
shall focus on the different theories’ prediction of
ionic association into triplets.

The rdf’s between like ions for five different states
are shown in Fig. 1a. Note that g, .(r)=g_ _(r) for
the RPMY. The curves are labelled with the
approximate concentrations they refer to in order to
facilitate comparison with results for other
electrolyte solution models. The exact specification
of each state is given in Table 1. The rdf’s between
unlike ions for three states are shown in Fig. 1b.

Excellent agreement is found between MC, HNC
and PYRL for the highest and lowest
concentrations. The EXP approximation also
agrees with MC at the lowest concentration. The
HNC and PYRL are fairly accurate at intermediate
concentrations, whereas the MSA, LIN and SQ are
rather poor over the entire concentration range.

MSA and LIN are indistinguishable at the scale
used because g"5(r) is very close to unity, except at 3
M. Both approximations give negative values of
g+ +() at rR, which is an unphysical situation
since the rdf’s represent probability densities. This
flaw, which occurs in some thermodynamic states, is
well-known from studies on the RPM.!® The poor
accuracy of MSA and LIN for small r is not
surprising since |C(r)| becomes quite large. A linear
approximation to exp[ C(r)], which is the asymptotic
form of g(r) as c—0, is here a poor approximation. So
is also a quadratic approximation, hence the drastic
overestimation of ¢g52,(r) for r* R. We note that
both g, .(r) and g, _(r) are underestimated in the
MSA, which explains the superiority of the MSA E
results given in Table 2 as compared to the MSA,P
results because the MSAE depends only on the
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Fig. 1. Radial distribution functions g, .(r), (), and g _(r), (b), for the RPMY corresponding to aqueous

solutions of 2—2 electrolytes at 25 °C. The curves show MC (@), HNC (
(—-—) LIN (= —'——), $Q (—~-), and EXP (-

), PYRL (——), MSA

*) results as functions of reduced distance between

centers of the hard spheres. The given concentrations are only approximate, exact specifications of the

thermodynamic states are given in Table 1.

difference between g, .(r) and g, _(r) whereas
MSA,P also depends heavily on their sum.

In terms of an ionic virial expansion of g(r), the
large difference between MSA and EXP may be
attributed to the fact that EXP contains the second
ionic virial coefficient, but the MSA (or LIN or SQ)
does not. This also explains the high accuracy of
EXP at 00001 M. At higher concentrations,
however, the EXP becomes rather poor, which we
take as an indication of the importance of the third
and higher-order virial coefficients. The HNC,
which includes the complete third ionic virial
coefficient, and the PYRL, which has got important
contributions from it, are indeed more accurate at
these intermediate concentrations. The differences
occur mainly in g, ,(r) at r=~2R, and we note that
the contact values of g, .(r) and g, _(r) are quite
accurate in the EXP, HNC and PYRL. If the EXP is
equally accurate for the contact values of the RPM
rdfs, our “contact” condition for the
correspondence between RPM and RPMY states is
certainly numerically accurate in addition to being
justified on formal grounds.®
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The high contact values of g, _(r) are typical for
ion-pair formation. This feature is well-known from
experimental and theoretical studies of electrolyte
solutions, and must also be expected for the RPMY
since it is determined mainly by the interactions at
short range. The relatively high values of g, ,(r) at
r~2R and intermediate concentrations reflect a
tendency of triplet-ion formation. This has received
less attention since the classic works of Fouss and
Kraus,3* but may play an important role in eg.
electronic exchange reactions.>> The importance of
+—+ and — + — aggerates in the RPM was
discussed by Friedman and Larsen on the basis of
HNC calculations.'® Rossky et al. conclude in a
recent paper that the HNC tends to overestimate
g. +() for a similar charged soft-sphere model in
this region.!! In particular, they carried out MC
calculations that show no peak in gMS (r) beyond
statistical noise at 0.005 M, whereas their g'"C(r) has
a distinct peak at r=2R, like that found for the
RPM. Correcting the HNC by including the
simplest bridge diagram, Rossky et al. found that the
new equation, which they called the BHNC
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Fig. 2. Monte Carlo results for g, ,(r) at 0.005 M.
The 4 x 106 configuration run has been divided into
four consecutive parts in sequence a—b—c—d.
Each curve shows a subaverage over 10° configura-
tions.

.equation, does not give this particular peak, in
closer agreement with their MC results and with
results from the PYA equation. Their conclusion
was that the HNC equation greatly exaggerates the
importance of triplets and large aggerates.

Our work on the RPMY shows that for this
model, the HNC hardly seems to overestimate the
number of triplets. As a matter of fact, the MC
results for 0.005 M do show a peak in g, ,(r) at

03 T T
02} .
g.{R<)
s -
00 -1- -~ 1 1
0 10° 107 10" 1 10

¢ [mol-I""]

Fig. 3. Contact values of g, .(r) as function of con-
centration c¢. The curves show MC (@), HNC
( ), and PYRL (——-) results for the RPMY
corresponding to aqueous solutions of 2—2 elec-
trolytes at 25 °C.

r~2.3R of the same height as that found in g"™N(r),
but slightly shifted to larger r. At 0.025 M there does
not seem to be a peak, but a shoulder in gM€, (r) at
r=2R. The statistical noise level is acceptable at
0.025 M, but quite high at 0.005 M.

The apparent difference between our conclusion
and that of Rossky et al. led us to analyze the MC
results for 0.005 M in more detail. In Fig. 2, we have
divided the run into four parts containing 10°
configurations each. Only one of these parts (c) gives
a distinct peak at rx2R, and only about 5 x 10*
configurations within this part actually contribute to
the peak. It may seem like a triple-ion configuration
is seldom hit during the MC sampling. But when a
triple-ion is formed, it will persist long enough to
count significantly in the average. In other words,
there may be a practical ergodicity problem. The
formation of triple ions is undoubtedly a real feature
of the RPMY, but how important it will be in runs
longer than 4 x 10° configurations remains an open
question.

In light of our results, the conclusions drawn by
Rossky et al. may seem doubtful. Their runs are
relatively short, 6.4 x 10° configurations, whereas
the peak in g, ,(r) at 0.005 M did not even show up
until after 2 x 10° configurations. It should be kept
in mind, however, that we compare two different
models that may show different features in terms of
triple-ion formation.

Both HNC and PYRL differ slightly from MC
results for g, ,.(r) and g, _(r) for R<r<2R. This is
also reflected in the internal energies listed in Table
1. The contact values of g, ,(r) are, however, in
perfect agreement with the MC results. The
concentration dependence of g, (R +) is shown in
Fig. 3. The HNC results for charged soft spheres and
the RPM show a maximum in g, , (R) between 10~3
and 10~ M. This has been interpreted in terms of
triple-ion formation.!® MC and BHNC results for
the soft-sphere model do not show this maximum,
however.!! Neither have we found it for the RPMY,
as shown in Fig. 3. The close correspondence
between RPM and RPMY on one hand and the
HNC results for g, ,(R+) on the other seem to
contradict each other, and the reason for this is not
clear to us.
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